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The convolution formulas for the Cauchy dis t r ibut ion and for  the dis- 

t r ibut ion of the reciprocal of the square of a standard normal random variable 

are here derived from the geometry of c i rcular ly  symmetric gistributions on 

the  plane. Other kncm derivations seem quite different, and i n  a sense, less 

elementary, though some are by no means less interesting. A few other illus- 

t ra t ions  of the geometrical method are also included. 

Iet a , a' , b and b' be points on a c i r c l e  w i t h  a C a' and 

b C b' , and suppose tha t  t he  chords (a, a ' )  and (b, b ' )  intersect  i n  a 

point c not exterior t o  the c i rc le  and not the sane as a or  b . Then 

the angle (a, c, b )  i s  half the sum of the arcs (a, b )  and (a', b') . 
This f a c t  seems old and widely known, The special case i n  which a' = b' = c 

is  very familiar indeed (Euclid I11 2 6  and 271, and the general case is  eas i ly  

inferred from the special one w i t h  the aid of the construction l ine  (a, b') .  

If a and b are two points in  the Euclidean plane, the direction from 

a t o  b is the vector from a t o  b normalized t o  uni t  length, and the 

unoriented direction is the unordered couple consisting of the  direction and 

i t s  negative, so tha t  the unoriented direction from a t o  b is also the 

unoriented direction from b t o  a . The notion of a uniformly distributed 

random direction needs no explicit definition here, and a random unoriented 

direct ion w i l l  be called uniformly distributed if it has the same distribu- 

t i on  as the unoriented direction associated with a uniformly distributed ran- 

dom direction. 

paragraph has the following probabilist ic interpretation. 

In t h i s  terminology, the geometric fac t  of the preceeding 

Lemma 1. If a random point P i s  uniformly distributed on the periphery - 
of a c i rc le  i n  the plane and c 

unoriented direction from c t o  P is uniformly distributed. 

i s  not exter ior  t o  t ha t  circle,  then the 

For the present form of the l ema  and of the argument leading t o  it, 

I thank E. J. G. Pitman and Paul Gvy, respectively. 
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L e t  Z be a random vector distributed w i t h  c i rcular  symmetry i n  the 

Euclidean vector plane. Assume, t o  avoid unimportant complications, tha t  

Pr(Z .I 0 )  = 0 . Let X and Y be a pa i r  of Cartesian coordinates of 2, 

and le t  R and A be the corresponding polar coordinates, so that: 

X P R cos A ; Y = R s in  A ; R and A are independent; Pr(R > 0 )  = 1 ; 

and A i s  uniformly distributed on the r e d s  modulo 2n . 
For t h i s  note, in te res t  centers on the example i n  which X and Y are 

independent and normally distributed with mean o and variance 1 , which 

w i l l  be called the standard example, The more general s i tuat ion i s  treated 

mainly t o  emphasize the structure of the arguments. 

I#& "J' mean "& distributed like". 

Theorem 1. For all real f and g ,  fX + gY - (f2 + g ) 

F&f: 

2 1/2 

2 1/2 fX + gY a [ f 2  + g ) R cos (A  - a) , where CY I arctan f/g . 
But A - cy - A  and i s  independent of R . Since X = R cos A ,  t h i s  com- 

p le tes  the proof. 

Specialized t o  the standard example, Theorem 1 is  the convolution formula 

fo r  the normal distribution. The proof, however familiar, helps t o  set the 

stage. 

Lemma 2. If u and T are nonnegative and not both o , - 
X - - .  

c T + T  

XY 
2 2 1/2 

b 2 X 2  + 7 Y ) 

Proof: Expressed i n  polar coordinates, the  lemma says that R times 

a cer ta in  function of A is distributed l i ke  R cos A or, equivalently 

R s i n  A . Since R and A are independent, it w i l l  be adequate t o  show 

that  the function of A , namely 

(0 + T)  s i n  A cos A 

(a cos A + T s i n  A )  2 2 2 1/2 ' h ( A )  - 
is dist r ibuted l i ke  sin A . But 
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s in  A 
2 1/2 ’ P 

[I + 2p COS A + p } 

where, p = ( 0  - T)/(o + 7).  Since ( s i n  2A, COS 2A) - (sin A, COS A), W h a t  

needs t o  be shown i s  tha t  h(A/2) - s i n  A for  each p i n  [-I, 1 1  . 
Geometrically, if A is  thought of as  a random point P on the unit  

circle, then h ( A / 2 )  is  the sine of the angulaz coordinate B of tha t  point 

as viewed from the point c = (-p, 0 ) .  If the angular coordinate associated 

with the direction from c t o  P i s  € 3 ,  tha t  associated with the opposite 

direction i s  B + T I ,  the sine of which is the negative of that of B . There 

fore, (sin B( depends only on the unoriented direction from c t o  P . But 

according t o  Lemma 1, t h i s  unoriented direction is distributed j u s t  as it 

would be i f  B were uniformly distributed, tha t  is, I s i n  BI - l s in  AI  . 
This, together with the remark that  the distribution of s in  A and s in  B 

are both syrmnetric, coEpletes the proof of the present lemma. 

Corollary 1. If M and N are independent and normal with mean 0 , 
then L = MN/(N2 + N2)’/* i s  normal with mean o and s.d.(L) = (s.d.(M)-’ + 

s . d . ( N )  ) . -1 -1 

This corollary has bcnn proved (Shepp 1964)  by recognizing i t s  obvious 

equivalence t o  the  standard-example application of the next theorem, which 

i t s e l f  i s  obviously eqirlvalent t o  the lemma. 

Theorem 2 .  For nonnegative p and q , 
1/2 + 1 / 2  2 P + - -  9 (P 1 

x2 Y2 X2 

Applied t o  the  standard example, the theorem asserts that the distribu- 

t i on  of the reciprocal of the square of a standard normal variable i s  stable 

of order 1/2 . Doetsch (1936) at t r ibutes  the fact t o  Cesaro and gives two 
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interesting, but not very probabilistic, demonstrations. b'vy ( 1940) inde- 

pendently discovered the fact  i n  the course of a beautiful  investigation of 

the Wiener process. For some Rrrther information, pursue "Stable distribu- 

tions of order 1/2" i n  the Index of (Fel ler  1 9 6 6 ) .  

The standard Cauchy distribution is the distribution of C I Y/X I tan A . 
Theorem 3. For all real f and g not both o , 

( fC  + g)- l  N fC  + g 
( f 2  + g') 

Proof: 
X 

a f Y t g X  (fc * g) - l  

N f - +  Y Q 
( f 2  + g2)  x f 2  + g2 ' 

as i n  the  proof of Theorem 1. 

Theorem 3 has been proved (Menan 1962, p. 1 2 7 0 )  by direct  calculation 

with the Cauchy density. 

Theorem 4. If Z' = (XI, Y*) is independent of Z and it too is dis- 

t r ibuted with circular symmetry, then, for  all r e a l  f and g , 

Proof: The lef t  side of ( 1 )  is U/V , where 

fYx' + gmr' 
U =  2 2 1/2 (g2X2 + f Y 1 

Given X and Y , U i s  distributed l ike  X' , as Theorem 1 shows. There- 

fore U is independent of V and distributed l i k e  X' . According to  

Lema 2, V - X/( 1 f l  + I gl ). This proves the theorem. 
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Corollary 2 .  If C and C' are independent and have the standard Cauchy 

distribution, then for d l  f and g , fC + gC' - (}fl + [gl )C . 
This popular elementary fact has been demonstrated i n  several other ways. 

The proof given here i s  easily extended S* for example (Feller 1966, p. 5 0 ) .  

t o  the multivariate Cauchy distribution, that is, the distribution of  a nor- 

mally distributed vector divided by an independent, standard normally dis- 

tributed number. 
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